Error Estimation for Reduced-Order Models of Dynamical Systems

نویسندگان

  • Chris Homescu
  • Linda R. Petzold
  • Radu Serban
چکیده

The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of small sample statistical condition estimation and error estimation using the adjoint method. Most importantly, the proposed approach allows the assessment of regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimation for Reduced - Order Models of Dynamical Systems ∗ Chris

The use of reduced-order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors by a combination of small sample statis...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

Efficient Reduced Models and A-Posteriori Error Estimation for Parametrized Dynamical Systems by Offline/Online Decomposition

Reduced basis (RB) methods are an effective approach for model reduction of parametrized partial differential equations. In the field of dynamical systems’ order reduction, these methods are not very established, but the interest in reduction of parametrized systems is increasing. In the current presentation, we show that some characteristic components of RB-methods can be transfered to model r...

متن کامل

NORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS

This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2005